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Review
The initiation of adaptive immune responses depends
upon the careful maneuvering of lymphocytes and anti-
gen into and within strategically placed lymph nodes
(LNs). Non-hematopoietic stromal cells form the cellular
infrastructure that directs this process. Once regarded as
merely structural features of lymphoid tissues, these
cells are now appreciated as essential regulators of
immune cell trafficking, fluid flow, and LN homeostasis.
Recent advances in the identification and in vivo target-
ing of specific stromal populations have resulted in
striking new insights to the function of stromal cells
and reveal a level of complexity previously unrealized.
We discuss here recent discoveries that highlight the
pivotal role that stromal cells play in orchestrating im-
mune cell homeostasis and adaptive immunity.

Stromal contributions to the initiation of adaptive
immunity
The enormous repertoire of antigen receptors in the immune
system provides a level of versatility to match the vast array
of potential antigens one may encounter in a lifetime. How-
ever, this versatility comes at the cost of pure numbers for
any antigen-specific cell. Each distinct naive T cell is ex-
ceedingly rare, and immunity depends upon the encounter
of these rare lymphocytes with an antigen-bearing dendritic
cell (DC). If left to chance, such an encounter would never
occur, but adaptive responses are initiated with remarkable
speed and reliability. This is made possible by strategic
placement of LNs throughout the body. Non-hematopoietic
stromal cells direct the formation of these structures (Box 1),
and the mature LN is populated by a variety of endothelial
and non-endothelial stromal cell subsets which provide the
crucial infrastructure necessary for controlled movement of
leukocytes into and within the LN (Table 1). However, in
comparison to their hematopoietic counterparts, the role of
these cells in supporting immune responses has, until re-
cently, been largely overlooked.

The basic concept of stromal cell mediated recruitment,
compartmentalization, and homeostatic maintenance of
immune cells has long been appreciated. Pioneering
research in the late 1990s established crucial roles for
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stromal cell produced chemokines CCL19, CCL21,
CXCL12, and CXCL13 in the attraction, retention, and
organization of circulating lymphocytes within lymphoid
tissues [1–4]. The expression of CCL19 and CCL21 in
lymphatic vessels has likewise been linked to the migra-
tion of antigen-bearing DCs [5]. However, these findings
alone do not sufficiently address the exquisite spatial and
temporal control of leukocyte movement and antigen
transport observed in the LN. Instead, there is a complexi-
ty to the ordering of stromal cell architecture, and the
shaping of the directional cues they produce, that has
remained largely unaddressed. Moreover, active immune
responses are accompanied by large-scale changes to LN
architecture and alterations to leukocyte migration pat-
terns, suggesting that stromal cells are not static struc-
tures, but must be dynamically regulated.

More recent studies have sought to understand the finer
intricacies of how the LN microenvironment directs cellu-
lar movement and homeostasis. These studies have
revealed a striking level of complexity and heterogeneity
in stromal cell populations not previously appreciated. In
this review we discuss recent advances in our understand-
ing of how the LN stroma coordinates the movement and
positioning of immune cells. We highlight studies that
redefine the functional identity of previously described
stromal cell subsets, and discuss the emergence of newly
defined populations. We also discuss the evolving role of
the LN stroma in directing active immune responses and
the mechanisms that drive these functions.

Lymphocyte recirculation and LN surveillance
Rare antigen-specific lymphocytes continuously survey
lymphatic tissues, entering through specialized blood ves-
sels termed high endothelial venules (HEVs, Table 1),
exiting through the cortical and medullary sinus to the
efferent lymph, and returning to circulation via the tho-
racic duct. This entire process occurs within a matter of
several hours, and thus millions of lymphocytes enter and
exit each peripheral LN on a daily basis.

The timely initiation of adaptive responses is predicated
on the efficiency of lymphocyte surveillance of lymphatic
tissues and recirculation; hence, significant efforts have
been made to understand the mechanisms that drive this
process. The stepwise interactions between lymphocytes
and HEVs necessary for lymphocyte ingress are largely
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Box 1. Lymph node development

The development of LNs begins during embryogenesis and is driven

by the interactions of hematopoietic lymphoid tissue inducer (LTi)

cells with non-hematopoietic mesenchymal cells. This process is

initiated upon expression of CXCL13 by mesenchymal cells

[93]. Interestingly, these poorly defined mesenchymal cells have

recently identified as adipocyte precursors that are reprogrammed

to give rise to LN stromal cells [94]. The stimulus leading to their

initial expression of CXCL13 is not yet entirely clear, although this is

thought to depend on the production of retinoic acid by nearby

nerve fibers [93]. Upregulation of CXCL13 in turn attracts CXCR5-

expressing LTi cells. LTi cells express both RANK and RANK-L, and

clustering of these cells likely allows homotypic interaction through

this signaling axis [95]. Signaling via RANK:RANK-L on LTi cells

leads to their upregulation of LTa1b2, which then triggers differ-

entiation of mesenchymal cells to lymphoid tissue organizer (LTo)

cells (also known as stromal organizer cells) [96–98]. LTo cells then

contribute to further recruitment of LTi cells, thus initiating a

positive feedback loop that fuels the continued recruitment and

development of LN tissue progenitors. LTo cells additionally begin

to attract and retain lymphocytes through the production of CCL19

and CCL21 and the expression of adhesion molecules ICAM-1,

VCAM-1, and MAdCAM [99]. LTo cells eventually give rise to the

various major LN stromal cell subsets that populate the mature LN,

including FDCs, FRCs, and MRCs. A more thorough examination of

the mechanisms driving early LN development and the differentia-

tion of various LN stromal cell subsets can be found in several

topical reviews [99–101].
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mediated by the coordinated action of a distinct set of
selectins, integrins, and chemokines [6,7], while opposing
molecular cues within lymphatic tissues govern lympho-
cyte retention and egress [8].
Table 1. Previously described stromal cell subsets of the LN.
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Lymphocyte recruitment to the LN
Despite continuous population turnover, resting LN and
splenic cellularity remains strikingly constant under rest-
ing conditions, and thus the drivers of lymphocyte ingress
and egress must somehow equalize. Exactly how this
occurs has largely been unclear. Evidence from Mionnet
et al. suggests that HEV endothelial cells (ECs) help to
maintain normal population homeostasis through the for-
mation of temporary holding areas for incoming lympho-
cytes [9]. Close inspection of HEV EC morphology revealed
that the distinctive cuboidal, or ‘high’ morphology of HEV
ECs, is actually a result of numerous lymphocytes nested
within pockets formed on the abluminal side of the cell
(Figure 1D). These pockets allow migrating lymphocytes to
exit the flow of circulation before being granted access to
the LN. The subsequent transition from HEV pockets to
LN parenchyma depends upon physical constraints – when
space is made available through cell egress in the LN sinus,
new lymphocytes are permitted entrance across the HEV
basal lamina. Hence, the rate of ingress is matched to the
rate of egress, and the proper resting cellularity of lym-
phoid organs is maintained.

Whether this transition occurs passively, with lympho-
cytes stochastically moving to fill empty space, or is actively
controlled by HEV ECs in response to environmental cues
remains unclear. However, there are other notable
requirements for the extravasation of circulating lympho-
cytes across the HEV basal lamina into the lymphoid
organ parenchyma. Movement of lymphocytes across
ferentiate from mesenchymal cells upon interaction with LTab-

ymphoid tissue inducer cells during lymphoid tissue organogenesis.

ecruit and retain hematopoietic cells to the LN anlagen and are thought

to several major stromal cell types including FRCs and MRCs.
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e B cell follicle through expression of CXCL13. FDCs are a major source

vival factors including BAFF and APRIL. FDCs efficiently acquire and
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tracellular matrix, forming a fiberoptic-like reticular structure. A large,
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 the flow of lymph and the transport of small molecules. FRCs are a

us group of cells that contribute distinct functions based on their

ocation within the LN, including support of HEV integrity, recruitment
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have been extensively studied owing to their role in lymphocyte ingress,

n about the immunological functions of non-HEV BECs. Both HEV and

s proliferate extensively during immune responses, likely reflecting the

ease blood flow to the growing LN.

 subset of BECs that line the post-capillary venules within the

f the LN. HEV ECs actively regulate the ingress of circulating

 to the LN parenchyma.

e afferent and efferent lymphatic vessels, the medullary sinuses, and

ling and floor of the LN subcapsular sinus.

31



(A)

(B) Lymph node sinus

Lympha�c capillary

Lymph node cortex

High endothelial venule

cLEC

CCRL1

CCL21

HEV ‘pocket’

FRC

HEV EC

Feed arteriole Efferent lympha�c

Medulla
Migra�ng leukocyte

T cell zone

B cell follicle FRC

LEC

Collec�ng vessel

Afferent lympha�c Bu�on-like junc�ons

Collagen-rich core

Lymph flow and
small soluble material

fLEC

(D)

(C)

TRENDS in Immunology 

Figure 1. Stromal cells coordinate immune responses by directing immune cells into and within lymph nodes (LNs). (A) Antigen-bearing dendritic cells (DCs) and free

soluble antigen enter the lymphatics through the initial lymphatic capillaries. These capillaries are formed from specialized lymphatic endothelial cells (LECs) joined with

discontinuous, button-like junctions that allow the passage of fluid and cells without disrupting junction integrity. (B) As DCs migrate into the LN they must traverse the

subcapsular sinus. The atypical chemokine receptor CCRL1, which is expressed exclusively by LECs lining the ceiling of the subcapsular sinus (cLECs), scavenges CCL21

and establishes a gradient that is most concentrated on LECs lining the floor of the subcapsular sinus (fLECs) and the LN cortex. This gradient directs DCs to transition from

migrating along cLECS to fLECS, and finally passing into the LN cortex. (C) Within the LN, immune cells crawl along the fibroblastic reticular cell (FRC) network which

directs the positioning of immune subsets and provides survival signals to both B and T cells. FRCs additionally form a conduit network that facilitates the transport of fluid

and fluid-borne signals and antigen through the LN. (D) Circulating lymphocytes enter the LN through the high endothelial venule (HEV). Lymphocytes are temporarily

retained within pockets formed by specialized blood endothelial cells (BECs) lining the HEV until there is sufficient space to migrate into the LN. HEVs are encircled by FRCs,

which direct lymph-borne signals to the HEV as well as help to maintain HEV integrity.
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the HEV basal lamina additionally depends on the activity
of autotaxin (ATX), an endothelial cell produced enzyme
that catalyzes production of the lipid mediator lysopho-
sphatidic acid (LPA) [10,11]. LPA in turn induces morpho-
logical changes to HEV ECs that appear necessary for
movement of lymphocytes across the HEV. Local inhibi-
tion of the ATX/LPA axis results in an excess accumulation
of lymphocytes within HEV EC pockets or in the sub-HEV
EC space.

Additional immune–stromal interactions may partici-
pate in the regulation of HEV function. For instance, DCs
are required for the homeostatic maintenance of HEV EC
function and lymphocyte homing to LNs in a lymphotoxin-
dependent manner [12]. Furthermore, in the absence of
continuous lymphotoxin b receptor (LTbr) signaling, blood
endothelial cells (BECs, Table 1) in the LN fail to develop
properties typical of HEV ECs, including polarized ICAM
expression and production of CCL19 and CCL21 [13]. No-
tably, lymphocytes are no longer found sequestered within
HEV pockets, and ingress of circulating lymphocytes large-
ly is impaired.

It should also be emphasized that the HEV functions as
a barrier as much as a port of entry. The continuous
influx of lymphocytes across the HEV, particularly during
32
initiation of immune responses, likely requires constant
rearrangement of the junctions between ECs. Fibroblastic
reticular cells (FRCs, Table 1) that encircle the HEV are
believed to provide crucial support in this regard through
interaction with CLEC-2-expressing platelets [14]. Liga-
tion of CLEC-2 with PDPN, a mucin-type glycoprotein
expressed on the surface of FRCs and various other stro-
mal subsets, mediates several immunologically important
functions (Box 2). Interaction of platelet-bound CLEC2
with PDPN on FRCs specifically induces the release of
S1P by platelets, which in turn elicits an upregulation of
VE-cadherin on HEV ECs. In the absence of CLEC-2-
PDPN signaling, HEV integrity is compromised and bleed-
ing occurs within the node.

Lymphocyte egress from the LN
Egress of lymphocytes primarily begins at the blunt ended
cortical sinuses populating the T zone of the LN, which
then flow into the medullary sinus and the efferent
lymphatics [15,16]. Transmigration across the sinus endo-
thelium is thought to occur through specific portals, al-
though this remains to be more thoroughly explored.
However, the molecular requirements for egress have been
thoroughly studied and found to be principally dependent on



Box 2. The CLEC-2:PDPN signaling axis

CLEC-2 (or CLEC1b) is a member of a small subgroup of C-type lectin

receptors characterized by signaling through a single ITAM motif

and utilization of the adaptor molecule spleen tyrosine kinase (Syk)

[102]. Other members of this subgroup, including Dectin-1 and

DNGR1, have emerged as key regulators of myeloid cell function

[103]. While CLEC-2 expression has likewise been identified in

myeloid cell populations [104], its function has been most

extensively studied in platelets, wherein CLEC-2 promotes coagula-

tion in response to the snake-venom toxin rhodocytin [102].

More recently, CLEC-2 has been shown to interact with podopla-

nin (PDPN or gp38), a well conserved mucin-type transmembrane

glycoprotein expressed endogenously in various lymphoid and non-

lymphoid tissues [105]. Notably, PDPN is highly and constitutively

expressed on LECS and FRCs, but is absent from BECs [106]. PDPN

contains only a short, nine amino acid cytoplasmic tail, but has

nevertheless been shown to functionally interact with the ezrin,

radixin, and moesin (ERM) family of proteins and mediate activation

of RhoA [107].

As with rhodocytin, engagement of CLEC-2 by PDPN triggers

activation of platelets – a process that has been found to be crucially

important for the normal development and maintenance of

lymphatic and blood vasculature [108]. The loss of either PDPN or

CLEC-2 expression results in a blood-in-lymph phenotype. Mechan-

istically, this has been attributed to loss of platelet-mediated

inhibition of LEC proliferation and migration. CLEC-2 signaling

triggers the release BMP9 from stored granules in platelets, which in

turn blocks lymphatic endothelial tube formation [109]. In addition,

intrinsic PDPN signaling in LECs has been shown to directly inhibit

tube formation through activation of RhoA [110]. Interestingly, while

platelet/megakaryote-specific loss of CLEC-2 results in the develop-

ment of blood-filled LNs, global deletion of CLEC-2 results in a

proliferative defect in LECs that impairs LN development comple-

tely, suggesting that other CLEC-2-expressing cell types are involved

in this process [111].

The CLEC-2:PDPN signaling axis has emerged as a key facilitator

of a variety of immune–stromal interactions. In this review we note

several immunologically important outcomes of CLEC-2:PDPN

mediated interactions, including maintenance of HEV integrity,

migration of DCs, and modulation of FRC contractility during

immune responses. Additional known functions of this signaling

axis include lung and heart tissue development [112,113], ectopic

germinal center formation by PDPN-expressing Th17 cells [114], and

tumor progression and metastasis [105].
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lymphocyte expression of sphingosine-1-phosphate receptor
(S1PR1) and a differential concentration of S1P within
lymph and LN tissue [17–19]. S1P is largely absent within
the LN parenchyma, while high concentrations within the
blood and lymph are established by hematopoietic cells and
lymphatic endothelial cells (LECs, Table 1) respectively
[20,21]. The S1PR1 receptor is rapidly internalized upon
contact with S1P, and thus naive lymphocytes that enter the
LN from the blood initially lack the capacity to respond to
S1P, preventing immediate egress into the lymph [22]. Thus,
while many of the cortical sinuses through which lympho-
cytes egress are found in close proximity to HEVs, direct
migration from HEV into the sinus is not typically observed
[15]. Instead, incoming lymphocytes remain within the LN
parenchyma until reacquiring expression of S1PR1 and
gaining access to the sinus, a process which has been found
to occur within 20 minutes to 1 h [15,23]. Interestingly, the
average dwell time of most T and B cells has been observed
to be much longer, lasting roughly 6–10 h for T cells and 12–
24 h for B cells [15,24]. This would suggest that the rate of
egress is not limited by acquisition of S1PR1 expression but
may instead reflect the competing effects of retention
signals. In the absence of CCR7, for instance, egress from
the LN occurs more rapidly [21]. Ultimately, future studies
will need to more thoroughly dissect the mechanisms gov-
erning dwell time and recirculation dynamics of naive lym-
phocytes.

Recruitment and retention of lymphocytes during
immunity
While the lymphocyte population in resting LNs is main-
tained at a fairly constant level, T and B cell numbers can
increase substantially during an active immune response.
Within hours of immunogenic challenge, lymphocyte re-
cruitment is enhanced while egress is transiently shut
down [25]. This process is largely initiated by innate
signals originating from the effected peripheral tissues.
Lymph-borne cytokines and chemokines are transported
into the LN cortex through a reticular conduit network
formed by FRCs that extends from the LN capsule to the
HEVs [26–28]. These factors can be transcytosed across the
HEV EC and displayed on the lumenal surface of the
vessel, enhancing recruitment of naive circulating lympho-
cytes [26]. Concurrent upregulation of CD69 on lympho-
cytes in response to inflammatory cues results in decreased
responsiveness to S1P and a transient halt to cellular
egress from the node [29]. This process effectively primes
the LN for the ensuing immune response by increasing the
pool of potential antigen-specific naive lymphocytes.

Massive alterations to the stromal network must take
place within the first few days of immune activation to
facilitate this net cellular influx and support the resulting
enlarged population. Early stages of an immune response
are associated with a proliferative expansion of the primary
feed arteriole, bringing a greater supply of blood circulation
to the LN [30]. HEVs also grow in both size and number
[31]. Interestingly, although HEVs become more numerous,
this occurs in proportion to the overall growth of the LN and
thus the density of these vessels remains constant [32].

This initial expansion of the LN vasculature is driven by
innate immune factors and may occur in the absence of
antigen [30]. LN-resident CD11c+ DCs appear to be crucial
for this stage of vascular expansion, but drive the process
through mechanisms distinct from the direct triggering of
LTbr, which was found to be necessary for homeostatic
maintenance of HEV ECs [32]. Instead, DCs are thought to
indirectly influence vascular expansion by enhancing the
production of VEGF by FRCs [33]. By contrast, subsequent
expansion and remodeling of the LN vasculature depends
on B and T cells [34]. In the case of LCMV infection,
continued LN expansion has been shown to occur indepen-
dently of VEGF, and instead requires B cell derived LTb

[35]. This proposed biphasic expansion of LN ECs presum-
ably mirrors the transition from innate activation to initi-
ation of adaptive immune responses.

The FRC network likewise undergoes morphological
changes and proliferative expansion to accommodate
increases in lymphocyte numbers [34,36]. As with expan-
sion of the blood vasculature, FRC growth also appears to
take place in two phases. Early expansion of FRCs is de-
pendent on the presence of DCs and trapping of naive
lymphocytes [36]. The exact mechanisms by which naive
lymphocytes may drive this process are yet unclear.
33
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However, direct triggering of PDPN signaling in FRCs
through interaction with DC-expressed CLEC-2 has recent-
ly been shown to reduce FRC contractility, allowing these
cells to stretch and accommodate increases in LN volume
[37,38]. Reduced contractility may additionally trigger pro-
liferative expansion of the FRCs [38]. By contrast, late-
phase expansion of the FRC network depends upon interac-
tion of the stromal network with activated lymphocytes
through LTab and LIGHT [36].

These studies collectively illuminate a generalized ex-
pansion of multiple components of the LN stromal cell
support network in response to inflammation and infec-
tion, and highlight the influential role these cells play in
driving the ensuing immune response. In contrast to the
events leading up to an immune response, significantly
less is known about the resolution of LN swelling and
return to homeostasis. Are there mechanisms in place to
limit the signals driving stromal cell expansion? Does LN
cellularity and architecture revert upon loss of these
signals? FRCs are believed to internalize PDPN upon
signaling, and this may be one means through which
LN swelling is limited or reversed [37,38]. In addition,
activated migratory DCs are relatively short-lived, and
thus reduced FRC contractility may be tied to the turnover
rate of CLEC-2-expressing DCs in the inflamed node
[39,40]. Similarly, B and T cell derived signals, which
promote stromal cell expansion, may be similarly lost as
these cells egress from the LN. However, there may also be
alternative signaling pathways that attenuate stromal
cell growth or proliferation that arise during the resolu-
tion of an immune response. These possibilities will need
to be more directly addressed in future studies. It is also
unclear how the stromal network copes with conditions of
chronic infection or inflammation. Ultimately, a better
understanding of these processes may have important
clinical relevance.

Antigen transport to LNs
In addition to coordinating lymphocyte recruitment, stro-
mal cells contribute to the initiation of adaptive responses
by facilitating the transport of antigen to the LN. Antigen
is brought from peripheral tissues to regional LNs through
an expansive system of lymph vessels. Collection of lymph
begins with blind-ended lymphatic capillaries, which are
formed of loosely-connected ECs with discontinuous ‘but-
ton’-like junctions (Figure 1A) [41]. These specialized junc-
tions allow ECs to form overlapping flaps that ensure
unidirectional uptake of fluid from surrounding interstitial
space into the vessel lumen. Lymphatic capillaries even-
tually converge into collecting vessels which, unlike the
initial capillaries, contain continuous junctions and are
surrounded by smooth-muscle cells [42]. Smooth-muscle
cells, along with movement of the surrounding tissue,
provide the necessary pumping action to regulate the
movement of lymph, and a system of valves separating
segments of lymph vessels ensures directional flow to the
draining node [43].

DC-mediated antigen transport
Stromal cells function as a crucial highway for tissue-
derived migratory DCs. En route to the T cell zone of
34
draining LNs, antigen-bearing DCs must crawl along
ECs lining afferent lymphatic vessels and FRCs lining
the reticular network of the LN. The PDPN:CLEC-2 sig-
naling axis has been identified as a key facilitator of these
interactions [44]. Expression of PDPN extends throughout
the stromal reticular network of the LN cortex as well as
the lymphatic endothelium, and, through its interactions
with CLEC-2, functions as a crucial factor driving the
migration of DCs from peripheral tissues to the LN. While
expression of CLEC-2 on DCs is normally low at resting-
state, activation and maturation results in its upregula-
tion. Upon binding PDPN, CLEC-2 signaling induces for-
mation of actin-rich protrusions and facilitates movement
of DCs along the stromal cell network. This, in conjunction
with chemotactic cues, guides the directional migration of
DCs into the lymphatic vasculature as well as their posi-
tioning within the LN cortex.

The primary chemotactic cues directing peripheral mi-
gratory cells into lymphatics have been well established
[45,46]. Both CCR7 ligands CCL19 and CCL21 have been
implicated in DC migration to the LN, but contribute to
chemotaxis by distinct mechanisms [47]. LECs constitu-
tively produce CCL21, which is then immobilized on ex-
tracellular matrix or cell surfaces through interactions
with heparin sulfate glycosaminoglycans (GAGs) [48]. Gra-
dients of immobilized CCL21 are formed around initial
lymphatic vessels and these gradients direct DCs migra-
tion by haptotaxis [49].

Interestingly, numerous inflammatory chemokines such
as IL-8, RANTES, and MCP-1 have also been shown to bind
GAGs and can presumably be displayed on LECs [50]. How-
ever, inflammatory leukocytes do not accumulate around
lymphatic vessels or migrate to the draining node. Instead,
migration into lymphatic vessels is largely restricted to
CCR7-expressing DCs. Recent studies have suggested that
the accumulation of inflammatory cytokines on LECs is
prevented by the scavenging activity of the atypical chemo-
kine receptor D6, which is specifically expressed on the cell
surface of LECs. D6 binds to and internalizes numerous
inflammatory chemokines, but does not interact with
CCL19 or CCL21 [51,52]. In the absence of D6, inflammato-
ry leukocytes are found to accumulate around lymphatic
vessels and within the draining LN. This excess accumula-
tion of inflammatory cells actually results in congestion of
lymphatic vessels and impedes DC migration.

By contrast, CCL19 is not immobilized on cell surfaces,
but freely diffuses [53]. In peripheral tissue, it has thus
been suggested that DCs direct chemotaxis in an autolo-
gous manner by secreting CCL19, which then diffuses in
the direction of interstitial fluid flow [45]. Migration of DCs
within the initial lymphatic capillaries depends on active
crawling along the surface endothelium, and directionality
of movement within these vessels has been linked to the
rate of fluid flow [48].

Once in the larger collecting vessels, DCs are passively
swept along by the flow of lymph until reaching the LN
subcapsular sinus (SCS) [48]. Upon arriving at the drain-
ing LN, migrating DCs must next traverse the SCS – a
process which involves a recently described transition from
migration along the endothelial cells lining the ceiling of
the LN sinus [termed ceiling LECs (cLECs)] to the
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floor-lining endothelial cells [floor LECs (fLECs)] [54]. This
process is also driven by CCR7-directed migration along a
CCL21 gradient. Interestingly, this gradient is established
by the expression of the atypical chemokine receptor
CCRL1, which functions as a scavenger receptor for
CCL19 and CCL21 [54–56]. Expression of CCRL1 is re-
stricted to cLECs, thus preventing surface display of CCR7
ligands on the SCS ceiling and effectively directing migra-
tion of DCs through the fLECs and into the LN parenchy-
ma (Figure 1B).

Cell independent antigen transport
While uptake and transport via migratory DCs is typically
recognized as the major avenue of antigen delivery from
non-lymphoid tissues into LNs, soluble antigen can also
freely drain via the afferent lymph. This occurs rapidly,
with antigen arriving at the LN within a matter of min-
utes. Upon arriving at the LN, smaller antigens with a
hydrodynamic radius of less than �4 nm (or MW of less
than 70 kDa) rapidly permeate the LN cortex through
FRC-formed conduits (Figure 1C), making these antigens
readily accessible to resident DCs, cognate B cells, and
follicular DCs (FDCs, Table 1) that are in close contact to
the FRC network [28,57,58]. By contrast, larger particles,
such as viruses, are excluded from the conduit network.
Larger material is instead primarily captured by medul-
lary and subcapsular sinus macrophages [59], and can then
be transferred to B cells in the LN cortex [60–62]. The vast
majority of material present in the afferent lymph is
captured and filtered out as it passes through the LN
[63]. This process that has been found to not only influence
adaptive immune responses, but prevent systemic dissem-
ination of lymph-borne pathogens [61,64,65]. Recent evi-
dence suggests that LECs residing along the subcapsular
sinus may also capture and store antigen. Interestingly,
this archiving function appears to be restricted to prolifer-
ating LECs which emerge under inflammatory conditions
[66]. This would suggest that archiving of free antigen by
LECs occurs only in conditions of immunogenic challenge.

It should be noted that, while cell independent traffick-
ing of antigen to the LN has been convincingly shown to
occur during model immunization, the extent to which this
occurs during a natural infection, in which antigen is
introduced in more limiting quantities, is less clear. In
addition, the immunological consequence of DC-borne an-
tigen transport versus soluble antigen transport to the LN
will need to be examined. DCs carrying antigen to the LN
may be conditioned by signals derived from the site of
infection or the stromal cells upon which they migrate.
Cell-free antigen lacks this additional information, and
thus may elicit a distinct immunological outcome upon
arrival within the LN.

Immune cell positioning and homeostasis in LNs
Lymphoid organs are carefully organized into discrete
functional compartments. This compartmentalization is
crucial for optimal resource management and efficient
generation of adaptive immune responses. Significant
progress has been made in the last several years toward
deciphering the physical and chemical cues that direct
immune cells to their proper destination within the
lymphoid tissue parenchyma. Entry and movement of
lymphocytes within the densely packed LN depend on close
physical interactions with the stromal network [67]. Lym-
phocytes appear to crawl along the LN stroma, but largely
remain within strictly defined geographical regions that
are delineated by specific chemokine expression patterns
[67]. Entry and retention of lymphocytes in the paracor-
tical T cell zone is dependent on the expression of CCR7
and interaction with its ligands CCL19 and CCL21,
while incoming naive B cells additionally depend upon
CXCR5-mediated homing toward CXCL13-rich follicles
[2,5,68]. The role of stromal cells in orchestrating this
process has long been appreciated; however, the specific
contributions of FRCs, FDCs, and other stromal subsets, as
well as the precise means by which they shape the lym-
phoid tissue landscape, are only recently coming to light.

Studies in which FRCs were specifically ablated in vivo
(via administration of diptheria toxin to mice conditionally
expressing the diptheria toxin receptor in CCL19-expres-
sing cells) have confirmed the pivotal role these cells serve in
both organizing lymphocyte positioning within lymphatic
tissues as well as in maintaining cell homeostasis and
viability [69,70]. FRC-depleted LNs lose segregation of B
and T cell compartments, fail to maintain normal T cell
numbers, and are rendered incapable of mounting virus-
specific CD4 and CD8 T cell responses. Interestingly, only
naive lymphocytes require FRC-derived signals for reten-
tion within the LN because depletion of FRCs during an
ongoing immune response did not result in a loss of activated
lymphocyte numbers or failure to mount antiviral immunity
[70]. Failure to support T cell survival is likely due to the loss
of FRC-produced IL-7 [71]. This phenomenon is similarly
observed following long-term fibrosis of LNs in HIV/SIV-
infected subjects in which the FRC network is damaged or
inaccessible [72,73]. Unexpectedly, Cremasco et al. also
found that the loss of FRCs was equally devastating to
resident B cell populations, and likewise resulted in im-
paired germinal center formation and humoral immunity
[69]. FRCs localized to the B cell follicle were found to be
major producers of the B cell survival factor BAFF, thus
indicating that FRCs may not only organize and maintain
the paracortical T cell zone, but also help to establish and
maintain B cell homeostasis in the follicle. Whether BAFF-
expressing FRCs in the B cell follicle represent a distinct
population of stromal cells remains to be addressed. Recent
work by Mionnet et al has suggested that a previously
unidentified population of stromal cells, distinct from con-
ventional FRCs (based on transcriptional profile), populate
the T cell area of the LN [74]. Moreover, these cells, termed
‘versatile stromal cells’ (VSCs), could be instructed via
interactions with B cells to produce CXCL13. A phenotypi-
cally distinct, CXCL12-expressing population of reticular
stroma (CRCs) has also been found to populate the T-zone
proximal region of the primary B cell follicle as well the
germinal center dark zone [75]. The contribution of these
newly identified stromal populations to immune cell
compartmentalization and homeostasis will ultimately
need to be more thoroughly parsed out in future studies.
However, these findings nevertheless indicate a greater
level of heterogeneity to the LN reticular stroma than
previously thought.
35
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Maintenance of B cell homeostasis and the organization
of discrete follicles had previously been attributed to the
function of FDCs. Indeed FDCs are producers of both B cell
chemotactic cues (CXCL13) as well as BAFF, APRIL, and
other survival factors, and the loss of these cells results in
failure to maintain strict primary follicle organization
[76,77]. However, the specific ablation of FDCs alone
results in no appreciable decreases in BAFF production
in the spleen and LN, and only modest decreases in
CXCL13 in the spleen [77]. FDCs were also found to be
dispensable for resting B cell homeostasis. Nevertheless,
LNs lacking FDCs fail to maintain proper segregation of B
and T cell zones and were unable to support germinal
center formation upon immune activation. Interestingly,
loss of FDCs was found to result in encroachment of
CCL21-expressing FRCs into the B cell rich areas, which
might suggest that FDCs may additionally contribute to
maintenance of strict follicle borders through repression of
T cell chemotactic cues or by repelling T zone FRCs.

Marginal reticular cells (MRCs), a recently describe
stromal cell subset localized to the subcapsular sinus
overlying B cell follicles, have also been implicated in
the production of BAFF and CXCL13 [78,79] (Table 1).
However, their definitive contributions to LN organization
and homeostasis remain to be determined. Failure to
maintain B cell homeostasis in the absence of FRCs sug-
gests that MRC-derived BAFF and CXCL13 alone are not
sufficient for maintaining B cell follicles. Interestingly,
while little is known about the direct functional contribu-
tions of MRCs, fate-mapping studies have suggested that
this population gives rise to FDCs, and thus may serve as
important stromal cell progenitors [80].

Immune cell redistribution upon initiation of adaptive
immune responses
The significance of stromal cells in coordinating immune cell
positioning and migration within resting lymphoid tissues is
fairly well established. However, the contributions of stroma
to immune responses are only more recently coming into
focus. The failure to mount antiviral T and B cell responses
upon acute FRC ablation presents new evidence that the LN
stroma is indispensable during immunity [69]. However, it
is unclear whether failure to mount effective immune
responses following FRC ablation results from impaired
cellular positioning or because the collapsed LN architec-
ture can no longer regulate normal cellular ingress or
maintain the survival of B and T cell populations.

Using a model of conditional LTBR ablation in CCL19-
expressing FRCs, Chai et al. describe the formation of an
intact, but functionally immature T zone reticular network
[81]. Although slightly reduced in size and cellularity, the
basic architectural features of the LN remain largely nor-
mal, including the formation of distinct B and T cell zones
as well as a functional conduit network. However, the loss
of LTBR on LN FRCs nevertheless resulted in a loss of
immunocompetence and increased susceptibility to viral
infection. Failure to establish antiviral immunity in this
model was associated with impaired expression of inter-
leukin 7 and homeostatic chemokines CCL19 and CCL21
by FRCs. Whether the loss of FRC-produced chemotactic
cues is causal remains unclear, although plt mice, which
36
lack both CCL19 and CCL21, exhibit a similar delay in
antiviral response.

The importance of stroma-produced homeostatic che-
mokines during immune activation is an intriguing ques-
tion because numerous reports suggest that immune cell
compartmentalization is transiently disrupted during the
initial stages of an immune response to infection [82–
88]. This is a general phenomenon found to occur following
exposure to several viral, bacterial, and parasitic protozo-
an infections. Although in some instances this appears to
be due to direct targeting and destruction of the FRC
network [89], many of these pathogens have been found
to elicit a specific transcriptional downregulation of CCL21
and CXCL13 [86]. Disruption of immune cell compartmen-
talization has also been found to occur in response to
administration of lipopolysaccharide (LPS) or in the pres-
ence of particular immune adjuvants such as complete
Freund’s adjuvant (CFA) [86,90].

Whether this transient downregulation occurs by design
or represents a commonly exploited means of subverting
host adaptive immunity remains unclear. In most
instances, adaptive immunity does not appear to be im-
paired following this transient alteration in LN or splenic
architecture. However, in the case of Salmonella, LPS-
induced disruption of CCL21 and CXCL13 in draining
LNs enhances the virulence of this pathogen [88]. More-
over, the loss of these organizational cues during a variety
of infections appears to render the host more susceptible to
secondary infection [86].

It has been suggested that a temporary downregulation
of CCL21 and CXCL13 may benefit the host adaptive
immune response by limiting the recruitment of additional
naive lymphocytes after initial immune activation, thereby
reducing the competition for limited space and resources
[86]. An alternative possibility is that CCL21- or CXCL13-
mediated retention of lymphocytes within their respective
compartments must be relieved to allow favorable intra-
nodal repositioning for antigenic priming. For instance,
recent reports suggest that the chemokine receptor CXCR3
mediates T cell localization within the inter-follicular and
medullary zones, and enhances interactions with antigen-
bearing DCs [91,92]. This occurs through interaction with
stromal cell derived CXCL9 and DC-derived CXCL10
[91]. Both CXCL9 and CXCL10 are transiently expressed
upon exposure to LPS/poly(I:C) and follow a close recipro-
cal expression pattern to that of CCL21 and CXCL13.
Whether this represents a coordinated response to redirect
immune cells to regions rich in antigen-bearing APCs will
need to be specifically examined.

Concluding remarks
Stromal cells orchestrate adaptive immune responses by
directing the recruitment and positioning of lymphocytes,
delivery of antigen, and maintenance of cell populations
within secondary lymphatic tissues. These are not static
functions, but are dynamically regulated in response to
complex cellular or molecular cues.

Recent advances in high-powered imaging techniques
and the development of new genetic tools for specific
targeting of stromal cell subsets have reshaped the field
of stromal cell biology and enabled the study of these cells
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at far greater depth than ever before. New studies demon-
strate clearly that stromal cells are more heterogeneous
and functionally versatile than previously credited. The
contributions of newly described endothelial (cLECs and
fLECs) and non-endothelial (MRCs, IAPs, VSCs, and
CRCs) stromal cell populations to immune cell trafficking
and homeostasis are intriguing and warrant future
investigation (Table 1). Moreover, our understanding
of many previously established stromal populations,
including HEV ECs, FDCs, and FRCs, is continuously
evolving.

Upon immunogenic challenge, the LN stroma under-
goes marked expansion and reorganization. The mecha-
nisms driving this process and the consequences of these
alterations are not fully understood, although we have
discussed here the involvement of a variety of key signaling
pathways known to drive phenotypic and proliferative
expansion of LN stroma. A thorough understanding of
these processes may have relevant implications for vaccine
design. In addition, significantly less is known about what
regulates these pathways during immune responses or
how LN homeostasis is restored. Addressing these ques-
tions may yield findings relevant to the control of long-term
disruption of LN homeostasis and fibrosis resulting from
conditions of chronic infection or inflammation.

While the topics covered in this review have largely
focused on the contribution of LN stroma to immunity, it is
important to note that stromal cells are likely to be equally
crucial for the immunological functions of other lymphoid
organs and peripheral tissues. Many of the same popula-
tions of stromal cells may be found in other secondary
lymphoid organs, including the spleen and Peyer’s patch.
Whether these stromal cells are functionally similar to
those that populate the LN will need to be directly exam-
ined. However, given the environmental and architectural
differences of these other lymphoid tissues, there will
almost certainly be functional differences.

Ultimately, it has become clear that stromal cells con-
stitute a fundamental, although oft-overlooked, component
of the immune system. Recent studies discussed herein
have brought better resolution to the complex picture of the
LN microenvironment, and have opened the door to a bevy
of exciting new avenues to be explored. Ultimately, discov-
ering the precise means by which these cells coordinate the
cellular interactions necessary for the initiation of adap-
tive responses will have important biological and clinical
implications.
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